Screening of osteoprotegerin-related feature genes in osteoporosis and functional analysis with DNA microarray

نویسندگان

  • Xiaoming Wu
  • Shuzhang Guo
  • Guanghao Shen
  • Xing Ma
  • Chi Tang
  • Kangning Xie
  • Juan Liu
  • Wei Guo
  • Yili Yan
  • Erping Luo
چکیده

BACKGROUND Osteoporosis affects 200 million people worldwide and places an enormous economic burden on society. We aim to identify the feature genes that are related to osteoprotegerin in osteoporosis and to perform function analysis with DNA microarray from human bone marrow. METHODS We downloaded the gene expression profile GSE35957 from Gene Expression Omnibus database including nine gene chips from bone marrow mesenchymal stem cells of five osteoporotic and four non-osteoporotic subjects. The differentially expressed genes between normal and disease samples were identified by LIMMA package in R language. The interactions among the osteoprotegerin gene (OPG) and differentially expressed genes were searched and visualized by Cytoscape. MCODE and Bingo were used to perform module analysis. Finally, GENECODIS was used to obtain enriched pathways of genes in an interaction network. RESULTS A total of 656 genes were identified as differentially expressed genes between osteoporotic and non-osteoporotic samples. IL17RC, COL1A1, and ESR1 were identified to interact with OPG directly from the protein-protein interaction network. A module containing ERS1 was screened out, and this module was most significantly enriched in organ development. Pathway enrichment analysis suggested genes in the interaction network were related to focal adhesion. CONCLUSIONS The expression pattern of IL17RC, COL1A1, and ESR1 can be useful in osteoporosis detection, which may help in identifying those populations at high risk for osteoporosis, and in directing treatment of osteoporosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Extracellular exosomes and preeclampsia: a microarray-based study and functional enrichment analysis

Background:  Preeclampsia (PE) is a heterogeneous pregnancy disease which the exact pathophysiology of it is unknown. Recently exosomes have been indicated as a causative factor in the pathogenesis of PE. The aim of the study was to investigate in microarray library data to extract the differentially expressed genes (DEGs) in PE and to perform a functional enrichment analysis to predict the rol...

متن کامل

Diagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data

Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Screening and functional microarray analysis of differentially expressed genes related to osteoporosis.

We searched for key genes that could accurately predict bone mineral density. The gene expression profile GSE7429 was downloaded from the Gene Expression Omnibus database, which includes 20 samples, 10 with high and 10 with low bone mineral density. The differentially expressed genes (DEGs) were identified with packages in R language. Further, BLASTX was used to obtain COG function classificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2013